Влияющие факторы
Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.
На проводимость влияют следующие факторы:
- Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
- Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
- Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
- Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
- Температура. Чем она выше, тем выше коэффициент.
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Коэффициент теплопроводности
В поисках хорошего материала для строительства необходимо определить, как меняется степень теплопроводности в зависимости от типа и модели монолита.
Коэффициент для различных видов монолита
Для сравнения показателей теплопроводности следует ознакомиться с таблицей, охватывающей свойства всех типов материала. Наименьшая степень присутствует у пористых конструкций:
- Сухие блоки и газонаполненный бетон обладают небольшой теплопроводностью. Она зависит от показателей плотности. Если удельный вес блока составляет 0,6 т/м³, коэффициент составит 0,14. При плотности 1 т/м³ — 0,31. Если влажность находится на базовом уровне, показатели увеличатся от 0,22 до 0,48. При повышении влажности — от 0,25 до 0,55.
- Бетон с наполнением керамзитом. С учетом значений плотности определяется теплопроводность. Изделие с плотностью 0,5 т/м³ получит показатель 0,14. По мере увеличения плотности до 1,8 т/м³ свойство вырастет до 0,66.
Еще коэффициент зависит от применяемых наполнителей. Так, если тяжелый бетон (2,4 т/м³) будет иметь в составе щебенку, параметр составит 1,51.
При использовании шлака теплопроводность составит 0,3-0,7. Изделия на основе кварцевого или перлитового песка с плотностью 0,8-1 получат проводимость тепла 0,22-0,41.
Факторы влияющие на коэффициент
Степень проводимости бетона любой марки определяется множеством факторов. В их числе:
- Структура массива. Если в монолите присутствуют воздушные полости, передача тепла будет медленной и без больших потерь. По мере увеличения пористости теплоизоляция улучшается.
- Удельный вес массива. Монолит обладает разной плотностью, которая определяет его структуру и интенсивность обмена тепла. При росте показателей плотности растет и теплоотдача. В результате конструкция быстрее лишается тепла.
- Содержание влаги в стенах из бетона. Массивы с пористой структурой гигроскопичны. Остатки влаги, находящейся в капиллярах, могут просачиваться в бетон и заполнять воздушные поры, способствуя быстрой передаче тепла.
При выполнении расчетов нужно учитывать, что снижение влажности минимизирует проводимость тепла, из-за чего уровень теплопотерь становится невысоким.
С помощью пористых компонентов можно защитить постройку от быстрого расходования тепла и обеспечить хорошие климатические условия в здании. Изделия с низкой теплопроводностью эффективны при изоляции помещений, поэтому их применяют в северных регионах с суровыми зимами.
Теплопроводность и утепление зданий
Приступая к организации эффективной теплозащиты частного жилища, важно обращать внимание на тип материала, из которого создаются стены. С учетом специфики конструкции и эксплуатационных свойств, выделяют такие разновидности бетонных масивов:
- Конструкционные. Необходимы при возведении капитальных стен. Их характеризует повышенная устойчивость к нагрузкам и способность быстро пропускать тепловую энергию.
- Материалы для теплоизоляции. Задействуются при обустройстве помещений с минимальными нагрузками на стены. Обладают небольшим весом, пористым строением и малой теплопередачей.
Чтобы в помещении всегда сохранялась комфортная температура, рекомендуется использовать для возведения стен разные виды бетона. Однако в таком случае показатели толщины стен будут меняться. Оптимальный уровень проводимости тепла возможен при таких параметрах толщины:
- Пенобетон — не больше 25 см.
- Керамзитобетон — до 50 см.
- Кирпичи — 65 см.
Как производится расчет
Для сохранения тепла внутри дома и сокращения потерь тепловой энергии несущие стены делаются многослойными. Чтобы рассчитать толщину слоя изоляции, необходимо руководствоваться следующей формулой — R=p/k.
Она имеет следующую расшифровку:
- R — показатель устойчивости к скачкам температуры;
- p — толщина слоя в метрах;
- k — Проводимость тепла монолитом.
С помощью такой формулы можно благополучно выполнить расчет с помощью простого калькулятора. Это решается путем разделения толщины на коэффициент теплопроводности.
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными
Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание
Идеальный теплый дом
От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.
Необходимость расчетов
Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.
Оценка эффективности термоизоляции
В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.
В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.
Тепловые потери
Тепловые потери дома
Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.
Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.
Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.
Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций расположение дома на участке и другие.
Показатели теплопроводности для готовых построек. Виды утеплений
При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.
Монтаж минеральной ваты
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
- показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
- влагопоглощение имеет большое значение при утеплении наружных элементов;
- толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
- важна горючесть. Качественное сырье имеет способность к самозатуханию;
- термоустойчивость отображает способность выдерживать температурные перепады;
- экологичность и безопасность;
- звукоизоляция защищает от шума.
Характеристики разных видов утеплителей
В качестве утеплителей применяются следующие виды:
минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
Данный материал относится к самым доступным и простым вариантам
- пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
- базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
- пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
Для пеноплекса характерна пористая структура
- пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
- экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
Данный вариант бывает разной толщины
пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие
При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность
Другие свойства описываемых утеплителей
Утеплители из минеральной ваты не могут воспламеняться. Огнестойкость этих материалов определяется не только тем, каковы свойства материала, но и тем, в каких условиях они используются.
На степень огнестойкости большое влияние оказывает то, с какими материалами комбинируются утеплители. Также играет роль способ расположения защитных и покровных слоев.
Что касается пенополистирола, он относится к самозатухающим материалам. Поэтому стены, отделанные им, воспламеняются не так быстро. А если это все-таки происходит, пламя по их поверхности распространяется также медленнее, чем в случае с другими утеплителями.
Минеральная вата относится к негорючим веществам. Поэтому воспламеняемость поверхностей, облицованных ей, равно как и распространяемость пламени по ним, минимальна. Так как основа этого утеплителя – базальт – является натуральным камнем, минеральная вата способна выдерживать температуру – до 1000 °C, а распространению огня способна противостоять – до трех часов.
Виды, свойства и применение
По назначению кирпич подразделяется на строительный, специальный и облицовочный. Строительный применяется для кладки стен, облицовочный – для дизайна фасадов и интерьера, а специальный идет на фундаменты, дорожное покрытие, кладку печей и каминов.
Более узкая специализация обусловлена различной структурой изделий.
Полнотелый кирпич
Представляет собой сплошной брусок со случайными пустотами, составляющими менее 13 %.
Полнотелыми бывают кирпичи:
Силикатный, керамический – используются для возведения самонесущих стен, перегородок, колонн, столбов и так далее. Конструкции из полнотелого кирпича надежны, морозоустойчивы, способны нести дополнительные нагрузки. Перегородки обеспечивают хорошую звукоизоляцию при небольшой толщине, сохраняют большое количество тепла.
К тому же материал довольно декоративен и популярен у многих современных дизайнеров. Но высокий коэффициент теплопроводности и водопоглощения вынуждает сооружать наружные стены большой толщины или делать их трехслойными, сочетая с изоляционными материалами и другими видами кирпича.
Шамотный – изготавливается из специальной огнеупорной измельченной глины и порошка шамота путем обжига с повышенным температурным режимом. Применяется для выкладки каминов, печей и других сооружений, где требуется огнеупорность. Специфика применения определила большое разнообразие форм изделия:
- клиновидные и прямые;
- больших средних и малых размеров;
- фасонные с профилями различной сложности;
- специальные, лабораторные и промышленные тигли, трубки и другой инвентарь.
Клинкерный – изготавливается из тугоплавких глин с разнообразными добавками. Обжигается при очень высоких температурах до полного запекания. Различные компоненты и вариативность режима обжига придают кирпичам повышенную прочность, водостойкость и широкую палитру оттенков от зеленоватого, при обжиге с торфом, до бордового с угольными подпалами. Раньше широко применялся для мощения тротуаров, теперь используется в кладке и облицовке фундаментов. Теплопроводность керамического кирпича довольно высока.
Пустотелый кирпич
Материал допускает 45 % пустот от общего объема, а также отличается по форме, структуре и расположению пустот в бруске. Теплопроводность пустотелого кирпича напрямую зависит от количества воздуха в его теле – чем больше воздуха, тем лучше теплоизоляция.
Кирпич с пустотами – брусок с двумя-тремя большими сквозными отверстиями, которые служат скорее облегчению и удешевлению, нежели улучшению теплоизоляции. Применяется наравне с полнотелым аналогом, за исключением фундаментов и других конструкций, требующих повышенной прочности.
Щелевой кирпич – все тело блока пронизано отверстиями различной формы размеров.
- прямоугольными;
- треугольными;
- ромбовидными;
- сквозными и закрытыми с одной стороны;
- вертикальными и горизонтальными.
Довольно хорошая прочность и низкая теплопроводность определяют его востребованность для возведения наружных стен жилых зданий.
Поризованный кирпич – выпускается нескольких размеров. Кроме большого числа отверстий обладает пористой структурой материала, которая образуется при выгорании специальных мелких фракций, добавленных в глину. Обладает лучшим набором качеств для строительства наружных стен. Прочность, низкая теплопроводность и большие габариты сокращают сроки строительства в разы, при этом с соблюдением последних требований СНиП. Теплая керамика характеризуется самыми низкими показателями теплопроводности, но из-за хрупкости пока имеет ограниченное применение.
Облицовочный кирпич – тоже является пустотелым, удачно сочетая художественные и утеплительные свойства.
Таблица показателей теплопроводности строительных материалов
Наименование материала | Коэффициент теплопроводности, Вт/(м*К) |
Блок керамический | 0,17- 0,21 |
Поризованный кирпич | 0,22 |
Керамический щелевой кирпич | 0,34–0,43 |
Силикатный щелевой кирпич | 0,4 |
Керамический кирпич с пустотами | 0,57 |
Керамический полнотелый кирпич | 0,5-0,8 |
Силикатный кирпич с пустотами | 0,66 |
Силикатный кирпич полнотелый | 0,7–0,8 |
Клинкерный кирпич | 0,8–0,9 |
Почти всегда в строительстве дома для разных конструктивных элементов используются несколько видов кирпича с соответствующими характеристиками.
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:
Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.
Технические характеристики утеплителей для бетонных полов
О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.
Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.
При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.
Создание теплого пола требует особых знаний
Важно учитывать высоту и толщину материалов. Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
При этом важно повысить отдачу тепло от радиаторов
Для этого стоит воспользоваться следующими советами:
При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления
При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.
Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.
Экономьте время: отборные статьи каждую неделю по почте