ЩПС в дорожных работах
Щебеночно-песчаные смеси активно применяются и в строительстве дорог, в этой сфере востребованы ЩПС С3-С6. Смеси с крупным щебнем в составе группы С5, С6 используются при создании нижнего слоя дорожных оснований, они обеспечивают устойчивость дорожного полотна под влиянием нагрузок, препятствуют появлению трещин на его поверхности. С3 и С4 применяются в асфальтовых и покрытиях . С 6 используется при сооружении массивных бетонных конструкций, площадок для тяжелого автотранспорта, создании взлетных полос аэродромов.
К качественным характеристикам ЩПС можно отнести неограниченный срок хранения, смеси можно складировать даже под открытым небом в непосредственной близости от места проведения работ, с течением времени они не потеряют своих качеств, это полностью готовый к применению материал, не требующий использования смесительных установок в процессе создания дорожных оснований. Приобретение щебеночно-песчаной смеси более выгодно, чем покупка двух компонентов смеси и самостоятельное их смешивание в нужных пропорциях.
Как рассчитывается коэффициент уплотнения
Для этого необходимы лабораторные или, для частного домостроения, домашние испытания.
Образец материала уплотняется до той степени, которая будет организовываться на строительной площадке, после чего замеры утрамбованного образца сравниваются с замерами до уплотнения.
Общие принципы проведения испытаний, используемое оборудование и методы описаны в ГОСТ 22733-2016 и ГОСТ 8269.0-97.
Для более полного понимания процесса проверки степени уплотнения насыпных материалов рекомендуем посмотреть видео.
Также можно использовать более точные измерители плотности грунта.
Отличительные свойства речного песка и область его применения
Двумя главными особенностями речного песка являются: природная чистота и фракционная однородность. Частицы этого материала имеют округлые, сглаженные формы: что способствует его высокой сыпучести и влагоемкости.
Совет! Покупая сыпучий материал, учитывайте тот факт, что его вес зависит от влажности: то есть в одном кубе сухого песка больше, чем в 1 мᶟ влажного. Иначе рискуете купить много по весу, но недостаточно по объему
Рассчитывая необходимое количество, принимайте во внимание, что в справочниках величина удельного веса указана для сухого материала
Песок речной включают в состав готовых строительных смесей; применяют для обустройства стяжек полов; используют для очистки воды (от механических примесей) в качестве дренажа; а садоводы смешивают этот сыпучий материал с почвой для того, чтобы сделать ее более легкой и рассыпчатой.
Песчаную массу, добытую в карьере и имеющую в своем составе камни, глину и различные примеси, промывают водой и получают довольно чистый материал, который называют карьерным мытым.
В том случае, если карьерный песок просеивают (чтобы очистить от камней и больших фракций), его называют карьерный сеяный. Такой материал очень востребован при производстве строительных работ: раствора для кладки, обустройства фундамента и штукатурных работ.
Ответить однозначно на вопрос, какой материал лучше: речной или карьерный, нельзя, так как все зависит от вида строительных работ. Но можно утверждать точно, что песок для бетона чаще всего используют карьерный мытый. Дело в том, что зерна речного материала ввиду своей округлости и отсутствия острых граней плохо сцепляются с цементом: это может негативно сказаться на качестве конечного продукта. Но речной песок не содержит никаких включений, а вот в состав карьерного входят некоторые органические примеси, которые могут повести себя непредсказуемо, вступив в реакцию с химическими составляющими смеси. Поэтому принимайте решение сами: использовать карьерный мытый или речной песок.
2.1. Понятия и определения
2.1.1. Требуемый объем песка природного сложения в сосредоточенных резервах или карьерах ,когда он согласно транспортной схеме используется непосредственно для устройства конструктивных элементов земляного полотна (насыпь или дополнительные подстилающие слои дорожной одежды), следует определять по формуле
,
где — геометрический объем грунта устраиваемого конструктивного элемента (земляное полотно, дополнительный подстилающий слой) в уплотненном состоянии;
коэффициент относительного уплотнения (отношение требуемой плотности (скелета) сухого грунта в конструктивном элементе к плотности (скелета) сухого грунта в источнике получения.
Требуемый объем песка, исчисляемого и транспортных средствах (автомобили-самосвалы, железнодорожные полувагоны и т.п.), когда он находится в разрыхленном состоянии, следует рассчитывать по формуле
,
где — геометрический объем грунта устраиваемого конструктивного элемента земляного полотна в уплотненном состоянии (при требуемой плотности);
— коэффициент относительного уплотнения (отношение требуемой плотности сухого (скелета) песка в конструктивном элементе к насыпной плотности сухого грунта, определяемой при естественной влажности в стандартной 10-литровой емкости по ГОСТ 8736-93.
2.1.2 Требуемое количество песка можно рассчитывать по объему или по массе. В первом случае обмер производят либо путем регулярной геодезической съемки вырабатываемого источника получения материала, либо непосредственно в транспортных средствах (железнодорожных вагонах, автомобилях, баржах и т.п.).
При расчете по массе отгружаемый материал в вагонах или автомобилях взвешивают на железнодорожных или автомобильных весах. В соответствии с ГОСТ 11830-66 массу указывают в транспортной накладной.
Количество песка, поставляемого на баржах или судах определяют по осадке последних.
2.1.3 Количество песка пересчитывают из единиц массы в единицы объема и наоборот по значению насыпной плотности песка, определяемой при влажности материала во время отгрузки, в соответствии с ГОСТ 8735-88. Насыпная плотность и влажность строительного песка указываются в паспортах на каждую отгружаемую партию.
2.1.4 .Для приведения объема песка, поставляемого в нагоне или автомобиле, к объему в уплотненном состоянии, т.е. в конструктивном элементе, полученный исходный объем умножают на коэффициент относительного уплотнения. Последний зависит от зернового состава и влажности материала, способа погрузки и дальности возки.
2.1.5 .При разработке проектных решений коэффициент относительного уплотнения следует назначать в зависимости от требуемой плотности материала и конструктивном элементе или его соответствующем горизонте (СНиП 2.05.02-85, табл. 22) ориентировочно:
— при исчислении объемов, поставляемых из промышленных карьеров в транспортных средствах, — согласно СНиП 4.02-91; 4.05-91;
— при использовании песков естественной плотности в источнике получения — по СНиП 2.05.02-85.
2.1.6. В тех случаях, когда ПОС и ППР предусматривают отсыпку элементов земляного полотна, дополнительных подстилающих слоёв в зимний период (непосредственно или через промежуточные накопленные объемы — штабели) объемы песков, исчисляемые в транспортных средствах, необходимо увеличивать на соответствующие коэффициенты, приведённые в настоящей Методике.
2.1.7 .Дополнительные объёмы грунта, связанные с потерями при транспортировке, в зависимости от способа и дальности возки в соответствии со СНиП 3.02.01-87 следует принимать равными
— 0,5% — при дальности возки до I км;
— 1% — при большей дальности.
Допускается принимать больший процент потерь при достаточном обосновании и совместном решении заказчика и подрядчика, потребителя и владельца карьера.
2.1.8. Для определения коэффициента относительного уплотнения необходимы следующие исходные данные:
— коэффициент уплотнения и плотность грунта конструктивного элемента;
— стандартная максимальная плотность и оптимальная влажность материала;
— насыпная плотность.
2.1.9. В прил. 2 приведен более полный перечень терминов и определений.
Типология методов уплотнения грунта
Существует условная система подразделения методов уплотнения, группы которых формируются исходя из способа достижения цели — процесса выведения кислорода из слоев почвы на определенной глубине. Так, различают поверхностное и глубинное исследование. Исходя из типа исследования, специалисты подбирают систему оборудования и определяют способ его применения. Методы исследования почвы бывают:
- статическими;
- вибрационными;
- ударными;
- комбинированными.
Каждый из типов оборудования отображает метод применения силы, например пневматический каток.
Частично такие методы применяются в малом частном строительстве, другие исключительно при построении крупномасштабных объектов, возведение которых согласовано с местной властью, так как некоторые из таких строений могут оказывать влияние не только на заданный участок, но и на окружающие объекты.
Лабораторные исследования
Коэффициент уплотнения рассчитывается на основании данных лабораторных испытаний, где масса подвергается трамбовке и проверке на различных приспособлениях. Здесь есть свои методы:
1. Замещение объемов (ГОСТ 28514-90).
2. Стандартное послойное уплотнение щебня (ГОСТ 22733-2002).
3. Экспресс-методы с применением одного из трех типов плотномеров: статического, водобаллонного или динамического.
Результаты можно получить сразу же или по истечении 1-4 дней, в зависимости от выбранного исследования. Одна проба для стандартного испытания обойдется в 2500 рублей, всего их понадобится не меньше пяти. Если данные нужны в течение дня, используют экспресс-методы по итогам отбора как минимум 10 точек (по 850 руб. за каждую). Плюс придется оплатить выезд лаборанта – еще около 3 тысяч. Но на строительстве крупных объектов не обойтись без точных данных, а тем более без официальных документов, подтверждающих соблюдение подрядчиком требований проекта.
Как узнать степень трамбовки самостоятельно?
В полевых условиях и для нужд частного строительства тоже выйдет определить искомый коэффициент по каждому размеру: 5-20, 20-40, 40-70. Но для этого сперва понадобится узнать их насыпную плотность. Она изменяется в зависимости от минералогического состава, хоть и незначительно. Гораздо большее влияние на объемный вес оказывают фракции щебня. Для расчета можно пользоваться усредненными данными:
Фракции, мм | Насыпная плотность, кг/м3 | |
Гранит | Гравий | |
0-5 | 1500 | — |
5-10 | 1430 | 1410 |
5-20 | 1400 | 1390 |
20-40 | 1380 | 1370 |
40-70 | 1350 | 1340 |
Более точные данные плотности для конкретной фракции определяют лабораторным путем. Или взвешиванием известного объема строительного щебня с последующим несложным расчетом:
Насыпной вес = масса / объем.
После этого смесь укатывается до того состояния, в котором она будет использоваться на площадке, и измеряется рулеткой. Снова производится расчет по приведенной выше формуле, и в итоге получают две разных плотности – до и после трамбовки. Поделив обе цифры, узнаем коэффициент уплотнения конкретно для этого материала. При одинаковом весе проб можно просто найти отношение двух объемов – результат будет тот же.
Все строительные материалы, особенно смеси, имеют ряд показателей, значение которых играет важную роль в процессе строительных работ и во многом определяет итоговый результат. Для сыпучих материалов такими показателями являются размер фракции и коэффициент уплотнения. Данный показатель фиксирует, насколько уменьшается наружный объем материала при его уплотнении (утрамбовке).
Данный коэффициент чаще всего учитывается при работе со строительным песком, однако и песчано-гравийные смеси, и просто гравий сам по себе также могут менять свое значение при уплотнении.
Значимые факторы и свойства
Коэффициент уплотнения – это отношение плотности (объемной массы) «скелета» грунта на контролируемом участке к плотности того же грунта, прошедшего процедуру стандартного уплотнения в лабораторный условиях. Используется для оценки соответствия качества выполненных работ нормативным требованиям. Нормативные значения коэффициента для различных видов работ приведены в соответствующих ГОСТ, СНиП, а также в проектной документации на объект, и составляют обычно 0,95 – 0,98.
«Скелет» грунта – твердая часть структуры при определенных значениях рыхлости и влажности. Объемный вес «скелета» песка рассчитывается как отношение массы твердых составляющих к массе, которую имела бы вода, если бы занимала весь объем, занятый грунтом.
Определение максимальной плотности грунтов в стандартных условиях предполагает проведение лабораторных исследований, в ходе которых пробы грунта подвергаются уплотнению при постепенно увеличивающейся влажности до определения показателя оптимальной влажности, при которой будет достигнута максимальная плотность песка.
Коэффициент относительного уплотнения
При выполнении работ по перемещению песка, извлечению его из тела карьера, транспортировке и других операций, связанных с изменением таких свойств, как рыхлость, влажность, крупность частиц, происходит изменение плотности «скелета». Для расчета потребности и учета поступления строительного материала на площадку применяется коэффициент относительного уплотнения – отношение весовой плотности «скелета» песка на объекте к весовой плотности на участке отгрузки.
Коэффициент относительного уплотнения определяется расчетным путем и указывается в проектной документации на объект строительства (если для снабжения песком используются плановые поставки).При проведении расчетов учитываются:
физико-механические характеристики песка (прочность частиц, крупность, слеживаемость);
результаты лабораторного определения максимальной плотности и оптимальной влажности;
насыпной вес песка в условиях естественного расположения;
условия транспортировки;
климатические и погодные условия на период осуществления доставки, возможность отрицательных температур.
Уплотнение при обратной засыпке и трамбовке
Обратная засыпка – процесс заполнения вырытого котлована после выполнения определенных видов работ ранее вынутым грунтом или песком.
Процесс трамбовки выполняется по месту засыпки грунта с применением трамбовочных устройств, ударным воздействием или при применении давления.
В процессе выемки грунта происходит изменение его физических свойств, поэтому для определения объема необходимого для отсыпки песка необходимо учесть коэффициент относительного уплотнения.
Уплотнение при транспортировке
Транспортировка насыпных грузов автомобильным или железнодорожным транспортом также приводит к изменению плотности грунта. Встряхивание транспортного средства, воздействие осадков, давление верхних слоев песка приводят к уплотнению материала в кузове.
Для определения количества песка, необходимого для обеспечения заданного объема строительного материала на объекте, этот объем необходимо умножить на коэффициент относительного уплотнения, указанный в проекте на строительные работы.
Необходимость уплотнения грунта
Качество уплотнения грунта оказывает прямое влияние на несущую способность материала, уровень его водонепроницаемости. Увеличение интенсивности воздействия на 1% вызывает усиление прочности сырья на 10-20%. Некачественное уплотнение может вызвать просадку грунта, что станет причиной дорогостоящего ремонта сооружения, увеличения расходов на его содержание.
Трамбовка грунтов бывает вибрационной и статической. В первом случае вибрация образуется благодаря движению эксцентрикового груза: частицы в результате ударов обретают максимально плотное состояние, воздействие проникает в толщу материала. Данный способ повсеместно распространен ввиду высокого качества результата. Статистическое уплотнение производится под собственным весом, здесь верхний слой препятствует трамбовке нижних, что не всегда уместно во время строительных работ. К данной процедуре привлекаются катки, функционирующие на пневматических шинах либо гладких вальцах.
Песок может достигнуть максимальной плотности либо в абсолютно водонасыщенном, либо в полностью сухом состоянии. Но этот материал проявляет высокие дренирующие свойства, благодаря которым достаточная утрамбовка может быть выполнена при любом проценте содержания влаги. Но здесь нужно учитывать, что примеси ухудшают способность к выводу воды, материал становится более пластичным, что сказывается и на способности к уплотнению.
Корунд (алюминия диоксид и оксид, электрокорунд)
Маркировка и обозначения на абразивных кругах.
Данная разновидность абразивов представляет собой получаемый в промышленных условиях кристаллический оксид (диоксид) алюминия. Это материал с высокой абразивной эффективностью. Его твердость меньше, чем у алмаза только лишь на одну единицу. Возможность применять его неоднократно делает незаменимым материал в беспылевой очистной системе, в пескоструйной камере, в кабинетах и кабинах. Более легкие, по сравнению с металлической дробью, корундовые частицы чаще других находят свое применение в пескоструйных инжекторных камерах.
Оксид алюминия в качестве абразива участвует в декоративных процессах, например, в стальном (и др. видах материалов) матировании. Пескоструйное очищение с использованием корунда — одно из наиболее коротких по времени.
Почему важно знать коэффициент уплотнения песка и его насыпную плотность еще при покупке?
Большинство естественно добываемых нерудных материалов имеют пористую, немонолитную структуру. Поэтому такая неоднородная сыпучая масса в разных состояниях (на разных стадиях манипуляций с ней) показывает неодинаковые количественные характеристики.
Выполнить точный расчет потребности в том же песке длительное время было настоящей проблемой, пока не появилось такое понятие, как «коэффициент уплотнения песка».
Если говорить конкретно, то еще до момента непосредственного функционального применения, песочная масса подвергается нескольким видам воздействий, а именно:
- выемка, рыхление, промывка, просеивание и деление на фракции (стадия добычи);
- складирование (стадия хранения и аккумуляции материала);
- повторное рыхление (стадия загрузки в спецтехнику);
- трамбовка (стадия транспортировки) и еще одно рыхление при выгрузке.
В зависимости от временного периода каждой стадии, может меняться и такой важный показатель, как влажность песка. В итоге, к клиенту попадает материал несколько раз прошедший цикл изменений. Что самое интересное, песок является одним из самых непредсказуемых материалов по уровню изменений своей структуры.
Поэтому для многих заказчиков, которые покупали материал без учета его коэффициента уплотнения и насыпной плотности, стает настоящей неожиданностью поставка песка в «меньшем объеме».
Водопроницаемость грунтов
Средние ориентировочные значения коэффициента фильтрации для некоторых видов грунтов приведены в табл. 5.5
Таблица 5.5.
Ориентировочные значения коэффициента фильтрации грунтов
Грунт | Коэффициент фильтрации kƒ, м/сут. |
Галечниковый (чистый) | 200 |
Гравийный (чистый) | От 100 до 200 |
Крупнообломочный с песчаным заполнителем | От 100 до 150 |
Песок: гравелистый крупный средней крупности мелкий пылеватый | От 50 до 100 От 25 до 75 От 10 до 25 От 2 до 10 От 0,1 до 2 |
Супесь | От 0,1 до 0,7 |
Суглинок | 0,005 до 0,4 |
Глина | 0,005 |
Торф: слаборазложившийся среднеразложившийся сильноразложившийся | От 1 до 4 От 0,15 до 1,0 От 0,01 до 0,15 |
Для хорошо фильтрующих грунтов (песков и супесей) коэффициент фильтрации определяют с помощью прибора (рис. 5.16
), состоящего из трубы длиной l, заполненной грунтом, и двух трубок — подводящей и отводящей воду. При разности напоров Н2 — Н1 вода будет фильтроваться под действием градиента (J). Определив объем воды V, профильтровавшейся за время t, можно по формуле
(5.31)
Зависимость скорости фильтрации (Vƒ) от гидравлического фадиента, характеризующего водопроницаемость фунтов, носит название закона ламинарной фильтрации. Математическое выражение этого закона, предложенное Дарси, имеет вид
(5.32)
Рис. 5.16.
Схема установки для определения коэффициента фильтрации
Формулируется закон ламинарной фильтрации следующим образом: скорость движения (фильтрации) воды в грунте прямо пропорциональна гидравлическому градиенту. Фильтрация воды в вязких глинистых грунтах имеет свои особенности, связанные с малыми размерами пор и вязким сопротивлением водноколлоидных пленок, обволакивающих минеральные частицы грунтов.
Движение (фильтрация) воды в глинистых грунтах, в отличие от песчаных (рис. 5.17, кривая а
), начинается лишь при достижении некоторого градиента напора (см. рис. 5.17, кривая б), преодолевающего внутреннее сопротивление движения воды.
Рис. 5.17.
Зависимость скорости фильтрации в грунте от гидравлического градиента
Для кривой (б) различают три участка:
I — начальный (0—1), когда скорость фильтрации практически равна нулю (Vf= 0); II — переходный (1—2) криволинейный участок; III — прямолинейный (2—3), характеризующий процесс установившейся фильтрации.
Таким образом, в глинистых грунтах, особенно в плотных, при относительно небольших значениях градиента напора фильтрация может не возникать (участок 0—1, кривая б). Увеличение градиента напора приведет к постепенному, очень медленному развитию фильтрации (участок 1—2). Наконец, при некоторых значениях гидравлического градиента устанавливается постоянный режим (участок 2—3).
Напорный градиент, до достижения которого фильтрация в грунте не наблюдается, называется начальным градиентом (J’0). Во многих случаях исключают из рассмотрения участок 0—2 кривой «б» и закон ламинарной фильтрации для глинистых грунтов принимают в виде
(5.33)
где J’0 — начальный градиент напора, т.е. участок на оси J, отсекающий продолжение отрезка прямой 2—3 до пересечения с этой осью. Для песчаных грунтов фильтрация начинается сразу после передачи напора (рис. 5.17, кривая а).
Определение Ку в лабораториях или полевых условиях
Имея на руках проект с заданным коэффициентом уплотнения ПГС, песка или грунта, необходимо установить, соответствует ли фактическая плотность основания нужному значению. Для этого используются различные методики.
С помощью отбора проб
Этот способ наиболее точный, но не очень скоростной. Требуется участие лаборатории, поскольку на стройплощадках сложно организовать благоприятные условия для измерений.
Для опытов используются режущие кольца известного объема. Без нарушения структуры материала производится отбор проб и дальнейшее их взвешивание.
Отобранный в нескольких точках участка грунт упаковывается в герметичную тару и отправляется на исследование. После получения результатов взвешивания определяется зависимость плотности грунта от влажности и рассчитывается фактический коэффициент уплотнения в каждой точке отбора. После оценки степени подготовки грунта выносится решение о продолжении или прекращении работ по трамбовке грунта.
Динамическим плотномером (пенетромером)
Измерения применяются в качестве экспресс-метода, позволяющего оценить степень уплотнения основания в полевых условиях. Динамический плотномер представляет собой заостренный стальной стержень с ручкой и ударной площадкой. На нем подвижно закреплен груз определенной массы.
Плотномер устанавливается вертикально на основание. Затем груз поднимается и сбрасывается на ударную площадку. При этом стержень постепенно погружается в грунт. Количество ударов подсчитывается.
После того как наконечник полностью опустится ниже поверхности, по специальной таблице определяется коэффициент уплотнения. Если он меньше требуемого проектом, производится дополнительная трамбовка. Если Ку соответствует нужному значению, основание готово к дальнейшим работам.
Для уплотнения используются виброплиты, ручные и автоматические трамбовки. Чем ближе коэффициент Ку к единице, тем меньше в грунте пустот, соответственно выше плотность.
Электромагнитный метод
При таком способе плотность грунта на стройплощадке сравнивается с ранее установленной в лабораторных условиях. Измерения проводятся специальным прибором, инициирующий электрическое поле. Он передает электромагнитный импульс, который проходит через грунт и фиксируется датчиком, а по изменению значения определяется плотность.
Для испытаний на участке выбирается не менее 5 точек, расположенных по принципу клеверного листа. Большую погрешность дают влажность, крупные твердые включения, неоднородность почвы. Измерения проводятся относительно долго по сравнению с другими вариантами, где результат можно получить за один сеанс.
Метод штампа
При этом способе определяется динамический модуль упругости грунта, который находится в прямой зависимости от его плотности. Прибор состоит из нагрузочной плиты, тензодатчика усилий, штанги с грузом и упругим элементом, акселерометра и электронного блока.
При сбрасывании груза на площадку он, благодаря силе упругости, возвращается в исходное положение. Параметры взаимодействия считываются и обрабатываются электронным блоком. По результатам испытаний определяется модуль упругости, деформации и нагрузка. Информация представляется в графическом или численном виде на дисплее. Плотномер может архивировать и отправлять данные в ПК, что создает предпосылки для более детальной обработки и планирования строительства.
Прямой метод замещения объема
Согласно стандарту ГОСТ 28514-90 плотность грунта может измеряться с помощью пескозагрузочного аппарата или цилиндра с резиновым баллоном. Перед испытаниями в лабораторных условиях определяется плотность песка, в опытах она будет образцом для сравнения.
Для проведения испытаний на уплотненном основании выбирается лунка диаметром 100 мм. В нее из установленного сверху пескобака засыпается песок. Объем загрузки вычисляется по шкале на баке. Далее измеряется вес вынутого грунта. При известных параметрах среды (в данном случае песка) плотность грунта рассчитывается по формуле:
ρ=m*ρ0/m0, где ρ0 и m0 — плотность и масса песка, наполняющего лунку.
В методике с резиновым баллоном в качестве среды используется вода, которая заливается внутрь аппарата. Баллон помещается в вырытую лунку, заполняется водой. По количеству потраченной воды определяется объем грунта. Далее, измерив вес пробы, можно найти искомую плотность и коэффициент уплотнения.
Этот метод можно использовать, если количество твердых крупных частиц превышает 25%. Это щебеночные и гравийные основания, а также подушки из смесей ЩПС или ПГС.