Гидравлический калькулятор – онлайн расчет участка напорного трубопровода

Расчет потерь в системе стального трубопровода

CnpRussia.ru / Библиотека / Калькуляторы / Калькулятор гидравлического расчета стального трубопровода

Для проверки правильности подбора насоса нужно проверить запас мощности двигателя. Наш калькулятор проверки мощности Вам в этом поможет. Вы можете предотвратить факт искуственного занижения мощности стронних производителей. Предупреждение. Перегруженные насосы имеют сокращенный срок службы. Первыми ломаются подшипники и торцевые уплотнения.

Мощность насоса (кВт):

Расчет параметров центробежного насоса, при изменении частоты вращения

Данный калькулятор способен расчитать основные параметры насоса при изменении частоты вращения. Для этого необходимо внести в первую таблицу четыре параметра.

Расчет параметров центробежного насоса, при изменении частоты вращения

Данный калькулятор способен расчитать основные параметры насоса при изменении частоты вращения. Для этого необходимо внести в первую таблицу четыре параметра:

  • Исходную подачу, м 3 /ч
  • Напор, (м. в. ст.)
  • Обороты электродвигателя, (об/мин)
  • Частота, (Гц)

Далее, нужно ввести новые обороты электор двигателя, при которых должны расчитываться параметры. Все вычисления происходят по формулам, представленым ниже. Три нижних пустых поля используются для вывода результатов. Также вы сможете увидеть всё на графике. Индексами 1 и 2 помечены начальные и новые параметры соответственно. Для того, чтобы подсчитать напор или подачу, в обязательном порядке необходимо заполнить исходную подачу, исходный напор, обороты электродвигателя исходные n1 и новые n2.

Источник

Расход воды

Нормативы расхода воды отдельными сантехническими приборами можно обнаружить в одном из приложений к СНиП 2.04.01-85, регламентирующему сооружение внутренних водопроводов и канализационных сетей. Приведем часть соответствующей таблицы.

ПриборРасход ХВС, л/сОбщий расход (ХВС и ГВС), л/с
Умывальник (водоразборный кран)0,100,10
Умывальник (смеситель)0,080,12
Мойка (смеситель)0,080,12
Ванна (смеситель)0,170,25
Душевая кабинка (смеситель)0,080,12
Унитаз со сливным бачком0,100,10
Унитаз с краном прямой подачи воды1,41,4
Кран для полива0,30,3

В случае предполагаемого одновременного использования нескольких сантехнических приборов расход суммируется. Так, если одновременно с использованием туалета на первом этаже предполагается работа душевой кабинки на втором – будет вполне логичным сложить расход воды через оба сантехнических прибора: 0,10+0,12=0,22 л/с.

При последовательном подключении приборов расход воды суммируется.

Особый случай

Для пожарных водопроводов действует норма расхода в 2,5 л/сна одну струю. При этом расчетное количество струй на один пожарный гидрант при пожаротушении вполне предсказуемо определяется типом здания и его площадью.

На фото – пожарный гидрант.

Параметры зданияКоличество струй при тушении пожара
Жилое здание в 12 – 16 этажей1
То же, при длине коридора более 10 метров2
Жилое здание в 16 – 25 этажей2
То же, при длине коридора более 10 метров3
Здания управления (6 – 10 этажей)1
То же, при объеме более 25 тыс. м32
Здания управления (10 и более этажей, объем до 25000 м3)2
То же, объем больше 25 тыс. м33
Общественные здания (до 10 этажей, объем 5 – 25 тыс. м3)1
То же, объем больше 25 тыс. м32
Общественные здания (более 10 этажей, объем до 25 тыс. м3)2
То же, объем больше 25 тыс. м33
Администрации предприятий (объем 5 – 25 тыс. м3)1
То же, объем более 25000 м32

Вес тройников

D1xT1 – D2xT2 (мм) 57х3 – 45х2.5 57х4 – 45х3 57х5 – 45х4 57х3 57х4 57х5 76х3.5 – 45х2.5 76х6 – 45х4 76х7 – 45х5 76х3.5 – 57х3 76х6 – 57х5 76х7 – 57х5.5 76х3.5 76х6 76х7 89х3.5 – 57х3 89х6 – 57х4 89х8 – 57х5.5 89х3.5 – 76х3.5 89х6 – 76х6 89х8 – 76х7 89х3.5 89х6 108х4 – 76х3.5 108х6 – 76х5 108х8 – 76х6 108х4 – 89х4 108х6 – 89х6 108х4 108х6 108х8 133х4 – 89х3.5 133х6 – 89х5 133х8 – 89х6 133х4 – 108х4 133х6 – 108х5 133х8 – 108х6 133х4 133х6 159х4.5 – 108х4 159х6 – 108х5 159х8 – 108х6 159х4.5 – 133х4 159х6 – 133х5 159х8 – 133х6 159х4.5 159х6 159х8 219х6 – 133х5 219х8 – 133х6 219х12 – 133х10 219х10 – 133х8 219х8 – 159х6 219х6 – 159х6 219х12 – 159х11 219х16 – 159х12 219х10 – 159х8 219х6 219х8 219х10 219х12 273х7 – 159х4.5 273х16 – 159х11 273х10 – 159х6 273х12 – 159х8 273х7 – 219х6 273х10 – 219х8 273х12 – 219х10 273х16 – 219х12 273х18 – 219х16 273х7 273х10 273х12 273х16 325х8 – 219х6 325х10 – 219х8 325х12 – 219х10 325х16 – 219х12 325х8 – 273х7 325х10 – 273х10 325х12 – 273х12 325х16 – 273х16 325х8 325х10 325х12 325х16 377х10 – 273х7 377х12 – 273х10 377х16 – 273х12 377х20 – 273х16 377х10 – 325х8 377х12 – 325х10 377х16 – 325х16 377х20 – 325х18 377х10 377х12 377х16 377х20 426х10-325х8 426х12-325х10 426х16-325х12 426х18-325х16 426х10-377х10 426х12-377х12 426х16-377х16 426х18-377х18 426х10 426х12 426х16 426х18 Кол-во (шт.)

0 кг.

Особенности калькулятора по расчету диаметра трубопровода

Монтаж системы отопления невозможно произвести без множества предварительных вычислений. Для уменьшения расхода тепла, выбора оборудования необходимой мощности и экономии денежных средств нужен расчет теплопотерь трубопровода. В зимнее время любое здание теряет тепловую энергию. Чтобы поддерживать в доме нужную температуру, необходимо вычислить нужную тепловую мощность. Тепловые потери для каждого дома индивидуальны. На них влияют климатические особенности региона, особенности строительных материалов и другие факторы. При неправильном расчете можно получить избыток или недостаток тепловой мощности. Избыток тепла обычно компенсируют с помощью вентиляционной системы. Это приводит к дополнительным расходам. При недостатке тепловой мощности потребуется дополнительное тепловое оборудование. Также нужно учитывать расход тепла на обогрев предметов внутри помещения.

Расчет тепловых потерь трубопроводов обычно выполняется по нормативам. Человеку без соответствующего образования будет трудно разобраться в них самостоятельно. Для точного и качественного расчета можно обратится к специалистам, но это потребует дополнительных расходов. К тому же такой расчет достаточно долгий и для скорого подсчета тепловых потерь не подходит. Для срочного и точного расчета тепловых потерь трубопровода воспользуйтесь нашим калькулятором онлайн.

Калькулятор для расчета теплопотерь трубопровода предлагает удобный и приятный интерфейс. Его рабочая область представляет собой поля для ввода значений и кнопки. Управлять им можно с помощью мыши и клавиатуры. Порядок ввода не имеет значения, пользователь сам выбирает удобный способ. Сервис позволит вам рассчитать теплопотерю при обогреве трубы, которая проходит по воздуху и залегает в грунте.

Расчет диаметра канализационной трубы

Эта статья посвящена подбору наружного самотечного канализационного трубопровода; как определить диаметр трубы канализации, а также назначить ей требуемый уклон

Рассмотрим это на следующем примере:

Расход на участке внутриквартальной хозяйственно-бытовой канализации составляет Q=3 л/c. Подобрать железобетонную трубу.

Расчет канализационной трубы (участка сети) заключается в назначении для него диаметра и подборе уклона, см. расчетную схему ниже:

Расчетная схема участка канализационной сети

В соответствии с СП32.13330, минимально возможный диаметр внутриквартальной канализации составляет 150 мм. Это имеется в виду внутренний диаметр.

При подборе трубы мы стремимся назначить как можно меньший диаметр, обеспечив при этом минимально возможный уклон. Однако при этом действуют ограничения по минимальной скорости и максимально возможному наполнению трубы H/D:

Минимальные значения скорости и максимальные наполнения для различных диаметров канализационных труб

Например, исходя из этой таблицы для диаметра трубы 300 мм скорость на участке должна быть не меньше 0,8 м/c, а предельное наполнение H/D – 0,8 (т.е. максимально возможный слой воды в такой трубе 300*0,8 = 240 мм).

Необходимо отметить, что эта таблица в части наполнения H/D не касается дождевой канализации (ее трубопроводы подбираются на полное наполнение).

Наполнение H/D

Также нужно помнить, что при гидравлическом расчете канализационной сети, состоящей из нескольких участков >>> скорость не должна уменьшаться по ходу движения.

В рассматриваемом случае речь идет о внутриквартальной канализации, поэтому постараемся подобрать трубу диаметром 150 мм.

Открываем таблицы Лукиных для данного типа труб:

Фрагмент таблиц Лукиных для диаметра Д=150 мм

Мы пытаемся подобрать минимальный уклон, т.к. это будет способствовать минимальной глубине заложения трубы и сократит объем земляных работ.

Берем уклон 0,008 (это значит понижение отметки трубы на величину 8 мм на каждый метр ее длины, еще могут сказать: 0,8% или 8‰). Ищем в соответствующем столбце расход 3 л/c > он заключен между 2,51 и 4,32 л/c. Точное наполнение h/d и скорость v могут быть найдены интерполяцией: H/D составляет 0,33, а скорость v = 0,58 м/c. Наполнение удовлетворяет требованиям нормативной таблицы (<0,6 для диаметра 150 мм), а вот скорость меньше минимально допустимой (0,7 м/c для диаметра 150 мм). При скорости 0,58 м/c труба будет заиливаться (т.е. на дно из-за медленного движения стоков будет выпадать осадок).

Таким образом, необходимо выбрать большее значение уклона трубы. Уклоны 0,01 и 0,012 также, очевидно, не подходят из-за скорости, а вот при уклоне 0,014 скорость составит 0,71 м/c (> 0,7 м/c). Поскольку наполнение H/D меньше 0,6, то можно считать трубу подобранной.

интерполяция значения скорости по значениям расхода (3 л/c между 1,49 л/c и 3,32 л/c)

Фрагмент таблиц Лукиных для диаметра Д=150 мм, подбираем уклон трубы для расхода Q = 3 л/c

ИТОГ: для транспортирования расчетного расхода 3 л/c во внутриквартальной хозяйственно-бытовой канализации подойдет труба диаметром 150 мм, положенная с уклоном 0,014 (14 ‰ ).

При больших расходах возникает вопрос выбора диаметра трубы. Например, на расход Q = 20 л/c подходит, как минимум, три варианта:

Первый вариант — труба 200 мм, уклон 6 ‰.

Второй вариант — труба 250 мм, уклон 3,5 ‰.

Третий вариант — труба 300 мм, уклон 5 ‰. (для этого диаметра скорость уже должна быть не меньше 0,8 м/c)

Окончательный выбор между вариантами можно сделать на основании их технико-экономического сравнения. Чаще всего при проектировании сетей канализации стремятся обеспечить наименьшую глубину заложения при выдерживании нормативных скоростей. Учитывая, что сопряжение участков канализации преимущественно выполняют «шелыга в шелыгу» (т.е. участки соединяются в колодцах по верхним точкам), то увеличение диаметра даже при уменьшении уклона может дать большую итоговую глубину заложения трубы. Поэтому из рассмотренных вариантов, первые два являются конкурирующими между собой, а третий им явно уступает.

Сопряжение участков канализации «шелыга в шелыгу»

По данной ссылке можно также загрузить электронные таблицы Лукиных со встроенной интерполяцией

Последовательность выполнения гидравлического расчета

1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.

Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.

В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.

2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:

а) заданный расход воды;

б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.

Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.

3. Определяется расчетное циркуляционное давление по формуле

, (5.1)

где– давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное

, (5.2)

где

– сумма длин участков главного циркуляционного кольца;

– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как

, (5.3)

где– расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.

Значение коэффициента можно определить из табл.5.1.

Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления

(),C

, кг/(м3К)

85-65

0,6

95-70

0,64

105-70

0,66

115-70

0,68

– естественное давление, возникающее в результате охлаждения воды в трубопроводах .

В насосных системах с нижней разводкой величинойможно пренебречь.

  1. Определяются удельные потери давления на трение

, (5.4)

где к=0,65 определяет долю потерь давления на трение.

5. Расход воды на участке определяется по формуле

(5.5)

гдеQ – тепловая нагрузка на участке, Вт:

(tг – tо) – разность температур теплоносителя.

6. По величинамиподбираются стандартные размеры труб .

6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.

При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.

7. Определяются потери давления на трение на расчетном участке, Па:

. (5.6)

Результаты расчета заносят в табл.5.2.

8. Определяются потери давления в местных сопротивлениях, используя или формулу:

, (5.7)

где– сумма коэффициентов местных сопротивлений на расчетном участке .

Значение ξ на каждом участке сводят в табл. 5.3.

Таблица 5.3 – Коэффициенты местных сопротивлений

№ п/п

Наименования участков и местных сопротивлений

Значения коэффициентов местных сопротивлений

Примечания

9. Определяют суммарные потери давления на каждом участке

. (5.8)

10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце

. (5.9)

11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на

. (5.10)

Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.

Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.

12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.

Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.

Таблица 5.2 – Результаты гидравлического расчета для системы отопления

На схеме трубопровода

По предварительному расчету

По окончательному расчету

Номер участка

Тепловая нагрузка Q, Вт

Расход теплоносителя G, кг/ч

Длина участка l,м

Диаметрd, мм

Скоростьv, м/с

Удельные потери давления на трение R, Па/м

Потери давления на трение Δртр, Па

Сумма коэффициентов местных сопротивлений∑ξ

Потери давления в местных сопротивлениях Z

d, мм

v, м/с

R, Па/м

Δртр, Па

ξ

Z, Па

Rl+Z, Па

Занятие 6

Диаметр трубопровода

Диаметр отводов от сантехнических приборов и сливных труб – это еще один важный параметр. Отклонение от него в меньшую стороны позволяет сэкономить на материалах, но может стать причиной постоянного образования заторов в сети.

Покупка изделия большего диаметра – это лишние затраты владельца частного дома. Сильный поток с агрессивными частицами способствует быстрому износу внутренних стенок системы. Кроме того следует учитывать неоднородность стоков. При большом уклоне жидкость будет стекать, а вязкие включения осядут на стенки трубопровода. Результатом может стать образование затора.

Определить правильно, какое сечение должен иметь трубопровод, помогает таблица гидравлического расчета канализации. Здесь на основе исходных данных подбирается значение для каждого конкретного случая.

В Санитарных Нормах и Правилах также можно найти рекомендации по выбору размеров канализационной трубы:

  • Отводы от мойки, раковины должны соответствовать диаметру выходного отверстия сантехнического прибора. Рекомендованные значения составляют 40 мм.
  • Сливы от душевой кабины, ванны должны иметь сечение не меньше 50 мм.
  • Унитаз подключают к отводу сечением 100-110 мм. Такие же изделия используют для канализационного стояка, но здесь размер может быть увеличен до 160 мм.
  • Обустройство наружной части отводящей магистрали предполагает применение материала сечением 160-220 мм.

Порядок проведения гидравлического расчета

Гидравлический расчет системы водоснабжения включает в себя следующие этапы:

  • Определение количества точек водоразбора – для этого по типовому плану здания определяют количество умывальников, ванн, унитазов в здании.
  • Составление схематического изображения (аксонометрической схемы) внутренней водопроводной сети – вручную или при помощи специального программного обеспечения составляется схема расположения стояков водоснабжения и подключаемых к ним сантехнических приборов. При этом для удобства дальнейшей работы каждый горячий и холодный водоснабжающий трубопровод отмечают различными цветами (красным и синим соответственно).
  • Разбиение водопроводной сети на отдельные расчетные горизонтальные и вертикальные участки, состоящие из трубопроводов и водоразборных узлов. Границами каждого участка является запорная арматура и сантехнические приборы.
  • Вычисление вероятности одновременного включения всех водоразборных узлов расчетного участка(P) – расчет значения данной величины производится по следующей формуле:

P=Q макс.вод ×U/Qприб.×N×3600;

где Q макс.вод –расход воды в часы с максимальным водопотреблением, л/ч на 1 жителя;

U – количество жителей, которых обеспечивают водой коммуникации и водоразборные узлы расчетного участка, чел;

Qприб. – нормативный расход через узел водоразбора в среднем составляющий 0,18 л/с;

N – количество входящих в расчетный участок узлов водоразбора (сантехнических приборов), шт;

3600 — коэффициент используемый для перевода литров в час в литры в секунду.

Определение максимального секундного расхода воды трубопроводом и водозаборными узлами расчетного участка по формуле:

Q макс.расх.вод= 5× Q в.приб×a; л/с

где Q в.приб – суммарный нормативный расход через узлы водоразбора участка;

a – величина безразмерная. Ее значение находят по специальным таблицам в СНиП 2.04.01-85.

  • Подбор оптимального внутреннего диаметра трубопровода — подбирается с учетом рекомендаций по использованию и экономической целесообразности применения в данных условиях.
  • Расчет скорости воды — вычисляют по специальным методическим пособиям, исходя из внутреннего диаметра выбранного трубопровода.
  • Вычисление потерь напора (Нl) по формуле:

Нl= L×i×(1+Kl); м.вод.столба,

где L – длина расчетного участка, м;

i – удельные потери напора при трении воды о внутренние стенки трубопровода, измеряется данная величина в миллиметрах водяного столба/метр трубопровода;

Kl – поправочный коэффициент, при проектировании жилых многоквартирных домов и коттеджей его значение равно 0,3.

Для зданий имеющих 2 и более этажей гидравлический расчет требуемого напора(Hтр) водопроводного ввода в месте его подключения к наружному магистральному трубопроводу производится по следующей формуле:

Hтр=10+(n-1)×4,

где n – количество этажей;

4 -напор необходимый для поднятия воды для каждого этажа, расположенного выше первого, м.

Фактический требуемый напор в точке ввода (Нф) находят, суммируя расчетный напор ввода (Hтр) с потерями напора на расчетных участках (Нl):

Нф= Hтр+ Нl расч.уч.1+ Нl расч.уч.2+ Нl расч.уч.3+ Нl расч.уч.4+ Нl расч.уч.n

Результаты такого расчета записывают в сводную таблицу.

Расчет сети водопровода города , страница 10

Схема потокораспределения сети при высоком хозяйственном водопотреблении

Схема потокораспределения сети при высоком транзите в водонапорную башню

Схема потокораспределения сети при высоком хозяйственном

Обозначение диаметров участков сети

Диаметры выбираются для 2-ух расчетных рабочих режимов сети: режима самого большого потребления воды и режима самого большого транзита в башню.

Диаметры участков сети подбираются с учетом требований экономности, котрые отличается экономическим аргументом Э, который для условий Беларуси принимается равным 0,75.

Обозначение диаметров выполняется по таблице 12 справочника Шевелева.

Данные расчета показаны в табл.9.

Расчетные затраты, л/с

Режим самого большого ВП

Режим самого большого транзита в башню

Обозначение расчетных затрат воды на участках определяется по правилу Кирхгофа.

Данные гидравлического расчета участка пишутся в виде над каждым расчетным участком.

d – диаметр участка сети

lФ – практическая длина участка сети

q – расчетный расход на участке

h – потери напора на участке

i – гидравлический уклон, определяемый по таблице Шевелева и зависящий от материала труб

После определения потерь напора на индивидуальных участках сети выполняется увязка потерь напора в кольцах и увязка колец между собой.

Увязка сети выполняется 2-мя способами: способом Андрияшева и способом Лобачёва В.Т. и Кросса.

4.2 Увязка сети по способу Андрияшева.

Способ Андрияшева выделяется наглядностью, т.к. весь расчёт ведется на расчётных схемах.

Увязка сети собой представляет систему последовательных попыток по исправлению заранее намечаных затрат, путём пропуска по кольцам сети увязочного расхода ?q.

Увязочный расход не нарушает баланса водорасхода в узлах, но снижает расходы воды на перегруженных и повышает на недогруженных участках.

q -средне арифметический расход замкнутого контура, л/с,

? h-невязка рассматриваемого кольца, м ,

?h-арифметическая сумма потерь напора в кольце, м ,

С новыми затратами и находим новую невязку.

Расчет сети водопровода города, страница 10

https://www.youtube.com/watch?v=Nnf8bRIAcv8

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Поделитесь в социальных сетях:FacebookX
Напишите комментарий